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Abstract: The Richardson plot has been used to illustrate fractal dimension of naturally occurring landscape 

features that are sensitive to changes in scale or resolution, such as coastlines and river channels. The 

Richardson method estimates the length of a path by traversing (i.e., “walking”) the path with a specific 

stride length. Fractal dimension is determined as the slope of the Richardson plot, which shows path length 

over a range of stride lengths graphed on log-log axes. This paper describes a variant of the Richardson plot 

referred to as the Scale-Specific Sinuosity (S3) plot. S3 is defined as negative one times the slope of the 

Richardson plot for a given stride length. A plot of S3 against stride length offers a frequency distribution 

whose area under the curve reflects total sinuosity, and whose points mark the amount of sinuosity 

contributed to the total sinuosity at each stride length. Mathematical relations of S3 with fractal dimension 

and sinuosity for linear features are described. The S3 metric is demonstrated and discussed for several 

linear stream features distributed over the conterminous United States. The S3 metric can help guide the 

preservation of stream feature sinuosity during cartographic generalization and may assist automated 

geomorphic classification of river systems. 
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1. Introduction 

A skilled geomorphologist or earth scientist can 

infer terrain and geologic conditions from the 

pattern and content of hydrographic features on a 

map. Geomorphologic classifications of river 

systems often include metrics for river sinuosity, 

meander size and meander frequency (Rosgen 

1994; Buffington and Montgomery, 2013). In order 

to preserve useful geomorphic patterns in 

generalized hydrographic data, generalization 

techniques should retain an appropriate portion of 



river system meander patterns. The Richardson 

plot (Richardson, 1961) is commonly used to 

examine the fractal dimension of linear features, 

such as streams or coastlines (Mandelbrot, 1967). 

Several authors have searched for relationships 

between sinuosity and fractal dimension (e.g., 

Snow, 1989; Andrle, 1992; Klinkenberg, 1992; 

Montgomery, 1996; Troutman and Karlinger, 1998) 

with limited success, but they do not quantify the 

scale-specific nature of these metrics. This paper 

contributes a derivative of the Richardson plot that 

enables visual and quantitative analysis of meander 

patterns in linear stream features across localized 

scale jumps.  The derived plot makes evident a 

systematic relationship that could guide the 

automatic classification of stream features to assist 

geomorphic classification and hydrographic feature 

generalization. 

Beginning with vector representations of linear 

stream features, Richardson plot points are 

determined by measuring the length of a stream 

polyline feature using a series of segment or stride 

lengths progressing from smaller to larger length. 

As the stride length increases, smaller details along 

the line feature are excluded and the total 

measured length is reduced from its original size. In 

essence, each point on the Richardson plot 

measures the length of a simplified version of the 

original stream, with simplification parameterized 

by the stride length. A log-log plot is used by 

convention to display these data, and the slope of 

this plot is considered an indication of the overall 

fractal dimension of the stream feature.  

A Richardson plot for four large linear stream 

features extracted from 1:24,000-scale National 

Hydrography Dataset (NHD) flowline features is 

shown in Figure 1 using the typical representation 

with values reported on a logarithmic scale. 

Although the Richardson plot is typically used to 

determine a single fractal dimension value, it has 

been observed that an evaluation of the slope 

between consecutive pairs of Richardson plot 

points reveals a pattern related to the frequency of 

large- and small-scale details, or meanders, in the 

stream features. This idea is developed into a 

metric we refer to as scale-specific sinuosity (S3). 

Snow (1989) partially alluded to this idea by 

subdividing the Richardson plot into three possible 

sections: the upper and lower sections that are 

asymptotic to near zero slope, and the section in 

between.  He further suggests zero-slope sections 

represent a “scale of view” where meander details 

cannot be resolved versus the center section where 

sinuosity can be measured. 

 

 

Figure 1. Richardson plot of four linear stream features 
extracted from 1:24,000-scale National Hydrography Dataset 
flowline features. Features include the Cannonball River, 
Licking River, San Cristobal Wash, and the Osage River. 

2. Methodology 

The S3 metric and corresponding graph are 

designed to show line complexity at different 

resolutions or scales of analysis. The graph is 

interpretable as a frequency distribution, such that 

the height of the graph shows the amount of detail 

at a given scale, and the area under the graph 

shows the detail in the line. Specifically, the 

average height of the graph is essentially equal to 

the fractal dimension minus one, while the total 

area under the graph is equal to the log of 

sinuosity.  

2.1 Derivation 

2.1.1 Feature Length vs. Stride Length 

Richardson plot computations follow methods 

described by Bernhardt (1992). The Richardson 

method estimates the length of a path by walking 

the path given a specific stride length, i.e. "walking 

the dividers" (Andrle, 1992; Bernhardt, 1992). For 



example, walking the path of a sample stream 

feature is demonstrated in Figure 2.  Stride length is 

referred to as s. Eight full strides exist for the 

sample feature in Figure 2. The length of the 

feature (F) that remains beyond the eight full  

Figure 2. Richardson plot measurements. Set of eight equal-
length strides (red) used to estimate “walk” length of stream 
feature (blue). Left over length of stream beyond the eight 
strides represented as Fextra. 

 

strides in Figure 2 is Fextra. Bernhardt (1992) defined 

an estimate, rs, of this remaining feature part as an 

appropriate portion of the stride length s, 

computed as follows:  

𝑟𝑠 = 𝐹𝑒𝑥𝑡𝑟𝑎  ×  [(𝑛 × 𝑠)/(𝐹 − 𝐹𝑒𝑥𝑡𝑟𝑎)], (1) 

where F is the length of the stream feature and n is 

the number of full strides. For the depiction in 

Figure 2, F is equal to the total length of the blue 

line representing the stream feature, and n is eight 

for the eight equal-length strides of length s. The 

walk length (ℓ) for the feature based on stride 

length s is computed as 

ℓ = 𝑛 × 𝑠 + 𝑟𝑠   (2) 

Applying Bernhardt’s (1992) refinement of 

Richardson’s method as described above, the 

length of each feature is estimated for a series of 

increasing stride lengths 𝑠1, 𝑠2, … , 𝑠𝑛. This results in 

a set of corresponding walk lengths ℓ1, ℓ2, … , ℓ𝑛. 

The S3 quantifies the relationship between stride 

length and feature length. This relationship for the 

Cannonball River is shown in Figure 3a. We 

interpret stride length as an indicator of 

scale/resolution, because for a given stride length, 

𝑠𝑖, the method essentially simplifies the feature to 

remove details smaller than 𝑠𝑖, and then computes 

the walk length, ℓ𝑖, of the simplified feature. 

2.1.2 Richardson Plot 

Figure 3 illustrates derivation of the Scale-Specific 

Sinuosity (S3) metric. The Richardson plot is a log- 

 

 

Figure 3: Derivation of scale-specific sinuosity metric (S3) for a 
single feature (Cannonball River in Figure 1). (a) Estimated path 
(or walk) length 𝓵 vs. stride length 𝒔; (b) same data on a log-log 
plot, i.e. Richardson plot without the regression line, (c) scale-
specific sinuosity (S3) plot, defined as negative one times the 
slope of the Richardson plot plotted against stride length on a 
log scale, (d) continuous version of the S3 plot. 



log plot of feature lengths vs. stride lengths (Figure 

3b). The overall slope of the linear regression in a 

Richardson plot has been widely used to calculate 

the fractal dimension of a feature (Goodchild, 1980; 

Mandelbrot, 1982). Specifically, the fractal 

dimension is calculated as one plus the absolute 

value of the slope of the best-fit linear regression 

line through the points of the Richardson plot. 

Bernhardt (1992) mentions that a single fractal 

dimension value may not capture the true 

character of a line, especially if the R2 value of the 

regression line is low. That is, for some line features 

or across some scale ranges the Richardson plot will 

exhibit a non-linear or random form. In such cases, 

the complexity and fractal character of the line 

cannot be captured in a single metric, as the line 

exhibits different characters at different scales.  

Goodchild (1980) argues that landscape features 

are generated by scale-dependent geomorphic 

processes that provide clues about the scale of a 

particular visual representation. Scale-dependent 

clues are not available in a line or a manifold that is 

replicated perfectly at every resolution. Therefore, 

a single fractal dimension value can only apply to a 

fixed range of scales. 

2.1.3 Scale-Specific Sinuosity (S3) 

To capture the complexity of a line feature at 

different scales, we define the scale-specific 

sinuosity (𝑆𝑥
3) for a given stride length 𝑠𝑥 as 

negative one times the slope of the Richardson plot 

at a particular location 𝑠𝑥 on the x-axis. Given that 

the Richardson plot is logarithmic, the slope is 

defined by the logs of ℓ and 𝑠. Note that for a finite 

number of stride lengths, this slope is constant 

between two consecutive stride lengths. 

Specifically, for any location 𝑠𝑥 between two 

consecutive stride lengths 𝑠𝐴 and 𝑠𝐵, the scale-

specific sinuosity can be calculated as:  

 𝑆𝑥
3 = 𝑆[𝐴,𝐵]

3 = −1 ×
log(ℓ𝐵)−log(ℓ𝐴)

log(𝑠𝐵)−log(𝑠𝐴)
=      

               
log(ℓ𝐴)−log(ℓ𝐵)

log(𝑠𝐵)−log(𝑠𝐴)
=

𝑙𝑜𝑔(ℓ𝐴 ℓ𝐵⁄ )

𝑙𝑜𝑔(𝑠𝐵 𝑠𝐴⁄ )
                      (3)  

This may be interpreted as the ratio of the growth 

rate of the line feature to the rate of increase in 

resolution, i.e. the rate at which feature length 

increases with finer measurement resolution. As 

with the Richardson plot, we define an S3 plot by 

plotting computed S3 values against stride length 

𝑠𝑥, setting the latter on a logarithmic scale (Figure 

3c).  The concept can be extended to a continuous 

S3 curve by imagining an infinite number of stride 

lengths, or equivalently, considering the limit of 𝑆𝑥
3 

as the difference between stride lengths 

approaches zero (Figure 3d). 

2.2 Relations to Existing Metrics 

2.2.1 Relation to Fractal Dimension 

Whereas the S3 values represent the slopes of the 

Richardson plot at individual points, the fractal 

dimension of a line feature is commonly calculated 

as one plus the absolute slope of the linear 

regression line through all points on the Richardson 

plot (Mandelbrot, 1967; Bernhardt 1992). Here it is 

postulated that the fractal dimension of a line 

feature is simply equal to one plus the average of 

its S3 values. Strictly speaking, however, the slope 

of the overall regression line is not necessarily 

equal to the average of the slopes at each point. On 

the other hand, the fractal dimension is a 

conceptual measure that only has meaning if the 

regression coefficient is high (Andrle, 1992; 

Bernhardt 1992). If the points of the Richardson 

plot all fall on a line then it is self-evident that the 

slope at each point will equal the slope of the 

entire line, and therefore the individual S3 values 

will equal the overall fractal dimension minus 1. 

Thus, the S3 metric can be interpreted as a scale-

specific estimate of fractal dimension, essentially 

addressing the critique that fractal dimension 

values for a single landscape feature might vary in 

reflecting geomorphic processes that vary with 

scale. 

2.2.2 Relation to Sinuosity 

This section relates sinuosity to the total area 

under the S3 plot. The total complexity of a line is 

often expressed using the following measure of 

sinuosity: 

 𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦 = 

𝑡𝑜𝑡𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠
 (4) 



Given that the Richardson plot is complete, in other 

words that the total feature length is captured at 

the smallest stride length 𝑠1, and the straight line 

distance between endpoints is captured at the 

largest stride length 𝑠𝑛, it follows that the standard 

measure of sinuosity is equal to: 

𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦 =
ℓ1

ℓ𝑛
                               (5) 

This measure of sinuosity has a minimum value of 

1, but we would like to express the "amount" of 

complexity in such a way that a perfectly straight 

line has zero complexity. For this purpose, we 

compute the log of sinuosity. Noting that log(𝐴/

𝐵) = log(𝐴) − log (𝐵), the following expression is 

derived:  

log(𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦) = log(ℓ1) − log(ℓ𝑛)           (6) 

It is now shown that equation 6 is equivalent to the 

total area under the S3 curve, as depicted 

graphically in the plots in Figures 3c and 3d. In 

Figure 3c, consider each vertical "bar" (defined as a 

section of constant slope between two measured 

stride lengths A and B). The area of this bar 

(denoted 𝐴𝑟𝑒𝑎[𝐴,𝐵]) is calculated as the height 

times the width on the graph. The height of the bar 

is the value of 𝑆𝐴,𝐵
3  defined in equation 3, while the 

width is simply the difference in the x-axis values, 

i.e. the difference between the logs of the stride 

lengths. This leads to the following calculation of 

the area of each bar: 

 𝐴𝑟𝑒𝑎[𝐴,𝐵] =
log(ℓ𝐴)−log(ℓ𝐵)

log(𝑠𝐵)−log(𝑠𝐴)
× [log(𝑠𝐵) − log(𝑠𝐴)]

  (7) 

which reduces to: 

  𝐴𝑟𝑒𝑎[𝐴,𝐵] = log(ℓ𝐴) − log(ℓ𝐵) (8) 

To calculate the total area under the curve, we 

simply add up the areas of all bars for stride lengths 

1 to n: 

𝐴𝑟𝑒𝑎[1,𝑛] =  [log(ℓ1) − log(ℓ2)] + [log(ℓ2) −

log(ℓ3)] + ⋯ + [log(ℓ𝑛−1) − log(ℓ𝑛)]       (9) 

The middle terms cancel, yielding: 

 𝐴𝑟𝑒𝑎[1,𝑛] = log(ℓ1) − log(ℓ𝑛) (10) 

This is exactly equal to the log of sinuosity, as noted 

in equation 6 above. The analysis can be extended 

to a continuous curve with equivalent results. Thus, 

the S3 curve can be interpreted as a log frequency 

distribution where the area under the curve 

represents the total log of sinuosity, and the S3 

value at each point represents the contribution to 

total log of sinuosity at each stride length.  

Note that the above analysis implies a relationship 

between sinuosity and fractal dimension, namely: 

 fractal dimension − 1 =                   

log(𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦)

log (𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑐𝑎𝑙𝑒𝑠)
              (11) 

The nature of this relationship and its implications 

warrant further analysis. 

3. Illustration with Hydrographic Data 

Figure 4 shows the S3 plot for the four stream 

features whose Richardson plot is shown in Figure 

1. Values on the x-axis are stride lengths, but 

placed on a logarithmic scale, while values on the y-

axis are corresponding negative slopes on the 

Richardson plot. Because the Richardson plot 

shows both stride lengths and feature lengths on a 

logarithmic scale, a constant interval on the graph 

represents a constant rate of increase or decrease. 

Thus, the slope between consecutive Richardson 

plot points (y-axis on the S3 plot) indicates the 

multiplicative factor by which detail is lost relative 

to a specific coarsening of resolution. We interpret  

 

Figure 4: Scale-specific sinuosity (S3) plot. The order of the 
features (top to bottom in the legend) mirrors the sequence 
shown in Figure 1 above. 



this as a measure of the detail contained in the 

original feature at that resolution.  

The graph has several properties beneficial to 

adaptive generalization and to geomorphological 

classification. First, the peaks on the plot 

corresponds to bend resolutions at which the 

greatest amount of detail is present in the original 

stream features. One can readily distinguish 

differences in large and small meander frequencies 

among the four sample features, whose plots in 

Figure 4 are more visually distinct than in the 

original Richardson plot (Figure 1). Specifically, one 

can detect graph stride lengths at which meanders 

of specific stride lengths are eliminated from the 

line as it undergoes simplification.  The four sample 

lines are illustrated in Figure 5, which separately 

maps the features, and reports each features 

unique NatureServe landscape division (NS Division, 

Comer et al., 2003), sinuosity (ratio of feature 

length divided by distance between endpoints), 

point density, and slope range within the respective 

landscapes. The table contained in each panel of 

the figure inventories sediment materials 

underlying the associated feature.  

Figure 5a shows that feature sample 3 (the 

Cannonball River, sinuosity 2.84) carries a large 

proportion of very small channel bends (0.05 to 1 

kilometer), as well as a few larger meanders in the 

central and eastern portions. The S3 plot (Figure 4) 

for the Cannonball River peaks at 1 kilometer. 

Figure 5b shows feature sample 21 (the Licking 

River, sinuosity 2.07) in which most bends are 

about 1 to 5 kilometers wide, and slightly larger 

than the Cannonball River. The S3 plot (Figure 4) for 

the Licking River peaks at about 3 kilometers. In 

Figure 5d, feature sample 48 (the Osage River, 

sinuosity 1.83) shows very few small bends but 

includes several large meanders that are about 2 to 

15 kilometers wide.  The S3 plot (Figure 4) for the 

Osage River peaks at about 10 kilometers. In Figure 

5c, feature sample 34 (the San Cristobal Wash, 

sinuosity 1.09) shows almost no meanders at all, 

relative to the other four samples. The S3 plot 

(Figure 4) for the San Cristobal Wash does not show  

  

Figure 5. Four sample streams from 1:24,000-scale NHD data 
and associated feature details including ecologic division, 
sinuosity, vertex density, elevation slope range, and underlying 
lithology. Respectively shown from top to bottom panels are 
(a) Cannonball River, (b) Licking River, (c) San Cristobal Wash, 
and (d) Osage River. Inset shows enlargement of correspond-
ing portion of feature highlighted in the maroon box. 

a 

b 

c 

d 



any substantive peaks relative to the other 

features. 

Second, the variant on the Richardson plot 

developed here provides a scale-specific 

progression of sinuosity values, giving more 

information than the single (global) metric for the 

entire line sample. Slope between pairs of points in 

a Richardson plot indicates the rate at which details 

are lost, with smaller details being eliminated 

initially. As reported above, for example, the 

(global) sinuosity values for the four samples range 

from 1.09 for the San Cristobal Wash (Figure 5c) to 

2.84 for the Cannonball River (Figure 5a). The log of 

these values corresponds to the total area under 

each curve in Figure 4. The range in y-values 

indicates that some ranges of stride length do not 

affect length changes much, while other stride 

length ranges manifest dramatic changes to feature 

length overall. These areas reflect localized scale-

specific ranges within which the line feature is quite 

sensitive to small variations in stride length. It is 

proposed that Scale-Specific Sinuosity (S3), as 

shown in the graphs, essentially reports a measure 

of sinuosity that is local within statistical “scale 

space”. This may be considered analogous to 

statistics localized in "mapped space", such as the 

LISA (Local Indicator of Spatial Association) metric 

derived for autocorrelation by Anselin (1995) in 

juxtaposition to Moran’s I, a global autocorrelation 

metric. As with the LISA metric, S3 values are 

generally additive, so that the total area under the 

logarithmic graph is a function of the overall 

sinuosity of the graphed feature. 

A third benefit of the S3 variant on Richardson’s 

original plot is the ability to utilize distinctions 

between stream line features as graphed (i.e., by 

distinguishing among patterns of S3) as one of 

several training variables that could be used for 

deep learning classification of stream features. 

Because the variant on the Richardson plot 

indicates specific ranges of stride length in which 

the feature lengths change, it provides a visual and 

quantitative tool to distinguish among features 

with high, medium or low proportions of large, 

intermediate and small meander bends. It may be 

possible to utilize this information in a deep 

learning analysis as one of several training layers to 

support classification of various geomorphologic 

characteristics. Further research using a larger 

sample set is required to demonstrate this 

empirically. To summarize, initial exploration 

indicates that the variant on the Richardson plot 

may provide a visual and quantitative tool to 

support the protection of sinuosity during 

generalization, and it may also provide a metric for 

geomorphic classification of river systems and 

landscapes.  

4. Discussion and Implications 

This paper describes a variant of the Richardson 

plot. The Richardson plot has been used widely to 

illustrate fractal dimension of naturally occurring 

landscape features that are understood to be 

sensitive to changes in scale or resolution, such as 

hydrographic features (coastlines, river channels, 

terrain, etc.). The original Richardson plot was 

foundational in Mandelbrot’s (1967) derivation of 

fractal dimension, working from the slope of a 

linear regression line passing through a log-log 

point cloud relating stride length to feature length. 

The variant described here is based upon a metric 

that we name Scale-Specific Sinuosity (S3) and 

defined as negative one (-1) times the slope of the 

Richardson plot for a given stride length. It can be 

interpreted as the rate at which feature length 

increases when measured at finer granularity (i.e., 

finer units of measure). A plot of S3 against stride 

length offers a frequency distribution whose area 

under the curve reflects total sinuosity, and whose 

points mark the amount of sinuosity contributed to 

the total value at each stride length. The S3 plot 

quantifies changes in fractal dimension at specific 

scales, and highlights resolutions at which a feature 

is particularly sensitive to slight changes in units of 

measurement.  

Sinuosity has been a focus for many analysts who 

have derived a multitude of metrics to characterize 

the complexity of linear features, polygonal shapes 

and geometric solids. The S3 metric quantifies 

systematic relations with fractal dimension and 



informs several important tasks that are specific to 

naturally occurring features. In addition to its utility 

for preserving sinuosity during cartographic 

generalization, the metric may also prove useful for 

characterizing or classifying linear features, 

especially streams with meander patterns that 

contain larger and smaller bends and convolutions. 

For example, it might be possible to quantify 

stream features by sinuosity magnitude and the 

distribution of sinuosity across scales based on 

proportions of area under the S3 curve between 

specific ranges of stride lengths. This should be 

correlated with the number of meanders for 

specific meander sizes. 

The S3 metric can be readily applied to a broader 

set of naturally occurring features such as 

coastlines, boundaries of land cover or vegetation 

polygons, or animal migration tracks.  Multi-scale 

representations and analyses of any of these types 

of features reasonably could be expected to have 

sinuosity constraints imposed on them.  For 

example, land cover and vegetation frequently 

serve as ancillary variables in landscape modeling; 

and while neither carries the same level of scale-

sensitivity as does hydrography or terrain, it might 

be very important in a modeling task to ensure that 

sinuosity is preserved within a specified range of 

values across scales to preserve logical 

relationships (e.g., landscape fragmentation) with 

modeled landscape values. One might also consider 

application of the S3 metric to examine complexity 

of human-made features, as in the case of urban 

expansion, development and structure (Batty and 

Longley 1994). 

This work may also have important analytical 

implications for surface modelling applications 

where resulting values might depend as much on 

the resolution as on the geomorphic process under 

investigation. For example, in natural hazards 

analysis such as flooding or debris flows following 

wildland fire, estimates of flow accumulation or of 

damage from landslides may depend upon the 

surface complexity of terrain. Derivation of scale-

specific sinuosity for linear features leads naturally 

to consider whether the metric can also be applied 

to higher dimensionality features. Such 

consideration however can be documented only 

with further research.  
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